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Sample Solutions Exercise 4

Exercise 4.1: Central Limit Theorem (CLT) (6P)

Let X1, X2, . . . , XN be statistically independent
and identically distributed random variables with
the probability density function

pX(x) =

{
e−x if x ≥ 0

0 otherwise.

With this exercise we would like to demonstrate
the CLT for ZN =

∑N
i=1Xi in the limit N →∞.

(a) Show that the N -fold convolution product
of p(x) is given by (1P)

pZN
(z) = p∗NX (z) =

(
pX ∗ pX ∗ · · · ∗ pX︸ ︷︷ ︸

N times

)
(z) =

zN−1

(N − 1)!
e−z (z ≥ 0) .

(b) Check the norm and compute the mean and the variance of pZN
(z). (1P)

(c) Standardize the distribution by shifting and rescaling ZN in such a way that the
new random variable Z̃N has a probability density pZ̃N

(z) with unit norm, zero
mean, and unit variance (see figure). (1P)

(d) Show that the cumulant-generating function KZ̃(t) of the standardized probability
density pZ̃N

(z) is given by (1P)

KZ̃(t) =
1

2
N lnN − t

√
N −N ln

(√
N − t

)
.

(e) Compute all cumulants κn and show that only κ2 survives in the limit N → ∞.
What does it mean? (2P)

Sample Solution

(a) Since pZ1(z) = pX(z) the assertion can be proven recursively by showing that
pZN
∗ pX = pZN+1

. In fact, for z ≥ 0 we have(
pZN
∗ pX

)
(z) =

∫ +∞

−∞
pZN

(z′)pX(z − z′) dz′ =
zN

N !
e−z = pZN+1

(z) .

(b) The moments are

mn =

∫ ∞
0

dz zn pZN
(z) =

Γ(N + n)

Γ(N)
=

(N + n− 1)!

(N − 1)!
,

giving

m0 = 1, m1 = N, m2 = N(N + 1), σ2 = Var(ZN ) = m2 −m2
1 = N .
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(c) First we shift the random variable to the center by replacing ZN → ZcentN =
ZN −N . For the distribution function this requires to shift its argument z in
opposite direction, namely z → z +N :

pZcent
N

(z) =

{
(z+N)N−1

(N−1)! e−z−N for z ≥ −N
0 otherwise.

Next we have to rescale the random variable by ZcentN → Z̃N = ZcentN /σ in
order to get a new random variable Z̃N with unit variance. For the distribution
function this means to scale reciprocally by z → zσ. In addition, the total
function has to be multiplied by σ in order to restore normalization:

pZ̃N
(z) =

{√
N (z

√
N+N)N−1

(N−1)! e−z
√
N−N for z ≥ −

√
N

0 otherwise.

(d) Use e.g. MathematicaR© to compute the moment-generating function

MZ̃N
(t) = 〈etz〉 =

∫ ∞
−
√
N

dz etz pZ̃N
(z) = N

N−1
2

+ 1
2 e−

√
Nt
(√

N − t
)−N

.

The corresponding cumulant-generating function reads

KZ̃N
(t) = lnMZ̃N

(t) = −t
√
N −N log

(√
N − t

)
+

1

2
N ln(N) .

(e) In order to compute the cumulants κn we have to calculate the n-th derivative
of KZ̃N

(t) with respect to t and then setting t = 0. This yields the following
results:

K ′
Z̃N

(t) =
t
√
N√

N − t
⇒ κ1 = 0

K ′′
Z̃N

(t) =

√
N

(
√
N − t)2

⇒ κ2 = 1

K
(n)

Z̃N
(t) =

N(n− 1)!

(
√
N − t)n

⇒ κn =
(n− 1)!

Nn/2−1 (n ≥ 2)

In the limit N →∞ the only cumulant which survives is the variance κ2 = 1.
Therefore, the stanardized distribution converges to a well-defined distribution
with a variance σ2 = 1 but no other properties. In the lecture we have shown
that this is the normal distribution.

⇒ Please turn over
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Exercise 4.2: Reconstruction of a probability density (4P)

(a) Prove the following statement: If the moment-generating functionMX(t) is analytic,
then the corresponding probability density p(x) is given by the inverse Fourier
transform (1P)

p(x) =
1

2π

∫ +∞

−∞
ds e−ixsMX(is).

(b) Consider a probability distribution with the cumulants

{κ0, κ1, κ2, κ3, . . .} = {0, 0,
3

2
, 0, −1

2
, 0,

1

3
, 0, −1

4
, 0,

1

5
, 0, −1

6
, . . .}

Compute the generating functions K(t) and M(t). (2P)

(c) Use (a) to reconstruct the probability density p(x). (1P)

Sample Solution

(a) The MGF is defined as M(t) = 〈etx〉 =
∫ +∞
−∞ dx p(x)etx, where t ∈ R. If M(t)

was analytic, this would mean that the defining relation is valid everywhere
in the complex plane, in particular on the imaginary line, i.e.

MX(is) = 〈eisx〉 =

∫ +∞

−∞
dx p(x)eisx ,

where s ∈ R. This implies that M(is) is (up to a possible prefactor) the
Fourier transform of the probability distribution. Thus we can invert the above
relation by (1P)

p(x) =
1

2π

∫ +∞

−∞
ds e−ixsMX(is).

(b) Obviously the nonzero cumulants are even and given by

κ2m =

{
1
2 + (−1)m+1

m if m = 1
(−1)m+1

m if m = 2, 3, . . .
.

Hence the CGF is given by (1P)

K(t) =

∞∑
n=0

κnt
n

n!
= 1

2 t
2 +

∞∑
m=1

(−1)m+1t2m

m

Since the infinite sum is of the form
∑∞

k=1
ak

k = − ln(1− a) we end up with

K(t) =
t2

2
+ ln(1 + t2) ,

implying that (1P)

M(t) = exp
(
K(t)

)
= e

1
2
t2(1 + t2).
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(c) Using the formula from (a) the probability density p(x) reads

p(x) =
1

2π

∫ +∞

−∞
ds e−ixsM(is) =

1

2π

∫ +∞

−∞
ds e−ixse−

1
2
s2(1− s2)

We can evaluate this expression with MathematicaR© , or we can do it by
hand as follows: We can express the −s2 contribution in the integrand by a
derivative:

p(x) =
(

1 +
∂2

∂x2

) 1

2π

∫ +∞

−∞
ds e−ixse−

1
2
s2 .

Using standard methods of quadratic completion the integral equals

1

2π

∫ +∞

−∞
ds e−ixse−

1
2
s2 =

1√
2π
e−

x2

2 .

Taking the derivatives we end up with the final result (1P)

p(x) =
x2e−

x2

2 I√
2π

.

Exercise 4.3: Transformation of probability densities (2P)

Let X and Y be two uncorrelated random variables which are both distributed according
to a normal distribution with zero mean and unit variance. What is the probability density
of the random variable Z := X/Y ?

Sample Solution
According to the lecture notes we can compute the new probability density by (1P)

p(z) =

∫ +∞

−∞
dx
∫ +∞

−∞
dy p(x) p(y) δ(z − x

y
)

Now we insert p(x) = 1√
2π
e−

1
2
x2 and p(y) = 1√

2π
e−

1
2
y2 and use the fundamental

realtion δ(ax) = 1
|a|δ(x), giving

p(z) =

∫ +∞

−∞
dx
∫ +∞

−∞
dy e−

1
2
(x2+y2) |y| δ(zy − x)

=

∫ +∞

−∞
dy e−

1
2
(z2+1)y2 |y| = 2

∫ ∞
0

dy e−
1
2
(z2+1)y2 y .

Thus we arrive at the result (1P)

p(z) =
1

π(1 + z2)
.

(Σ = 12P)
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