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SAMPLE SOLUTIONS EXERCISE 4

EXERCISE 4.1: CENTRAL LiMmiT THEOREM (CLT)

Let X1, X5,..., Xy be statistically independent
and identically distributed random variables with
the probability density function

(2) e ifx>0
s g
bx 0 otherwise.

With this exercise we would like to demonstrate
the CLT for Zy = 3., X, in the limit N — oo.

(a) Show that the N-fold convolution product
of p(x) is given by

pzy(2) = pX'(2) = (px*px*---*p

x)(2) = meﬂ (2=20).

TV
N times

(b) Check the norm and compute the mean and the variance of pz, (2).

(¢) Standardize the distribution by shifting and rescaling Zy in such a way that the
new random variable Zy has a probability density p; (z) with unit norm, zero

mean, and unit variance (see figure).

(d) Show that the cumulant-generating function K ;(¢) of the standardized probability

density pz (2) is given by

K5(t) = %NlnN—t\/N—Nln (\/N—t> .

(e) Compute all cumulants x,, and show that only kg survives in the limit N — oo.

What does it mean?

SAMPLE SOLUTION

(a) Since pz, (z) = px(z) the assertion can be proven recursively by showing that

PZy * PX = PZy,,- In fact, for 2 > 0 we have

400 , , ) ZN
(pZN *px)(z> = / pzy (F)px(z —2)ds" = ﬁe_z = pzy.(2).
o !
(b) The moments are
o0 I'(N+n) (N+n-1)!
My /0 Zz pZN(Z) P(N) (N— 1)' )
giving
mo=1, mi=N, mp=N(N+1), o°>=Var(Zy)=my—m?=N.




()

First we shift the random variable to the center by replacing Zy — Z§™ =

Zn — N. For the distribution function this requires to shift its argument z in
opposite direction, namely z — z 4+ N:

(2) % e * N forz>—-N
p cent ( & - :
N 0 otherwise.

Next we have to rescale the random variable by Z§™ — Zy = Z§™ /o in
order to get a new random variable Zy with unit variance. For the distribution
function this means to scale reciprocally by z — zo. In addition, the total
function has to be multiplied by ¢ in order to restore normalization:

(N—1)!

o (o) = [YNERE VNN o> VN
Zn 0 otherwise.

Use e.g. Mathematica® to compute the moment-generating function
oo _ —N
My (1) = (e¥) = / dzep; (2) = N T T3V (W—t) .
N
-VN
The corresponding cumulant-generating function reads
1
Kz () = My, (1) = ~tVN = Nlog (VN — ) + SN I(N).
In order to compute the cumulants x,, we have to calculate the n-th derivative

of K; (t) with respect to ¢ and then setting ¢ = 0. This yields the following
results:

tvN

K’ZN(t) TN 1 k1 =0

" _ \/N —
KZN(t) = 7(\/]v—t)2 = Ko =1

n N(n—1)! n—1)!
I I o NCES)

In the limit N — oo the only cumulant which survives is the variance ko = 1.
Therefore, the stanardized distribution converges to a well-defined distribution
with a variance 02 = 1 but no other properties. In the lecture we have shown
that this is the normal distribution.
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EXERCISE 4.2: RECONSTRUCTION OF A PROBABILITY DENSITY (4P)

(a) Prove the following statement: If the moment-generating function My () is analytic,
then the corresponding probability density p(x) is given by the inverse Fourier
transform

1 [t ,
p(z) = / dse ™™ My (is).

2r )
(b) Consider a probability distribution with the cumulants

3 1 1 1 1 1

..t =10,0,-,0,—=,0, 5,0, —,0, =, 0, —=, ...
{"{07 R1, Rg2, K3, } { s Uy 27 ) 27 ) ) 47 ) 57 ) 6’ }
Compute the generating functions K (t) and M (¢).

(c) Use (a) to reconstruct the probability density p(x).

SAMPLE SOLUTION

(a) The MGF is defined as M (t) = (e!*) = f_Jr;O dx p(z)e!®, where t € R. If M(t)
was analytic, this would mean that the defining relation is valid everywhere
in the complex plane, in particular on the imaginary line, i.e.

Mx (is) = (") = / dz p(z)e*™

—0o0

where s € R. This implies that M(is) is (up to a possible prefactor) the
Fourier transform of the probability distribution. Thus we can invert the above
relation by

I :
p(z) = o dse " Mx(is).
(b) Obviously the nonzero cumulants are even and given by
Ly GO =1
ifm=23,...

Rom =

Hence the CGF is given by

Since the infinite sum is of the form » .~ % = —In(1 — a) we end up with

t2
K(t) = 5 +In(l + %),

implying that



(c¢) Using the formula from (a) the probability density p(z) reads

1 [t : 1 [T : 12
p(r) = — dse "™ M(is) = — dse e 2% (1—32)
21 J_ o 27 J_ o

We can evaluate this expression with Mathematica® , or we can do it by
hand as follows: We can express the —s? contribution in the integrand by a

82 1 +o0 )
p(x) = <1+8932)277/—oo dse 525"

Using standard methods of quadratic completion the integral equals

derivative:

+oo 2
L ds e~ @35 — 1 -2

e
V2T

Taking the derivatives we end up with the final result

21 o

(@) 22e” 5[
p\x) = —F/—
V2T
EXERCISE 4.3: TRANSFORMATION OF PROBABILITY DENSITIES (2P)

Let X and Y be two uncorrelated random variables which are both distributed according
to a normal distribution with zero mean and unit variance. What is the probability density
of the random variable Z := X/Y?

SAMPLE SOLUTION

According to the lecture notes we can compute the new probability density by

+oo +oo
p(z) = / dz / dy p() ply) 6(z — &)

T
Y

Now we insert p(z) = \/%e_%ﬁ and p(y) = \/%e_%?ﬁ and use the fundamental

realtion d(ax) = ‘714(5(:1?), giving

+OO +OO 1 2 2
p(z) = / do / dy e 5 ] 5y — )

+oo 1,212 & L5241 1)92
= / dye—g(z +1)y |y‘ — 2/ dye_i(z +1)y y.
0

—00

Thus we arrive at the result

(T = 12P)



