Exercise 1.1: Attractor of a quadratic map \((6P) \)

Let us consider the nonlinear map \(x_{n+1} = f(x_n) \) with \(f(x) = a - x^2 \), where \(a > 0 \) is a constant.

(a) Determine the real-valued fixed points \(x^* = f(x^*) \) and assess their stability. \((2P) \)

(b) Set \(a := 1 \) and \(x_0 := 0.5 \) and iterate the map numerically up to \(n = 20 \). What happens for \(n \to \infty \) and how do you interpret the result? \((2P) \)

(c) Prove your observation in (b) analytically. \((2P) \)

Sample Solution

(a) Solving \(x^* = a - (x^*)^2 \) we find (for \(a > 0 \)) two real-valued the fixed points \((1P) \)

\[x^*_\pm = \frac{1}{2} \left(\pm \sqrt{1 + 4a} - 1 \right). \]

In order to check the stability we compute \((1P) \)

\[f'(x^*_\pm) = 2x^*_\pm = \pm \sqrt{1 + 4a} - 1. \]

A fixed point is stable if \(|f'(x)| < 1 \). Therefore \(x^*_+ \) is stable for \(a < \frac{3}{4} \), marginal at \(a = \frac{3}{4} \), and unstable for \(a > \frac{3}{4} \). The other fixed point \(x^- \) is always unstable. \((1P) \)

(b) For \(a = 1 \) and \(x_0 = 0.5 \) the iteration sequence reads (can be computed even with a pocket calculator): \(0.5 \mid 0.75 \mid 0.4375 \mid 0.808594 \mid 0.346176 \mid 0.880162 \mid 0.225315 \mid 0.949233 \mid 0.990208 \mid 0.0194888 \mid 0.99962 \mid 0.0075948 \mid 0.999999 \mid 1.15362 \times 10^{-6} \mid 1. \mid 2.66165 \times 10^{-12} \mid 1. \mid 0. \mid 1. \mid 0. \mid ... \) \((1P) \)

That is, until sufficiently many iterations, the sequence effectively alternates between 0 and 1. This phenomenon is called period doubling. \((1P) \)

(c) Apparently 0 and 1 are fixed points of the two-fold nested map

\[x_{n+2} = f(f(x_n)) = 2x^2 - x^4 \]

which has four fixed points \((1P) \)

\[x_0^* = 0, \quad x_1^* = 1, \quad x_{2,3}^* = -\frac{1}{2} \left(1 \pm \sqrt{5} \right). \]

Checking again \(|f'(f(x))| - |4x - 4x^3| \) at these fixed points shows that the first two are stable while \(x_{2,3}^* \) is unstable. Therefore, the sequence 0, 1, 0, 0, 1, ... is an attractive (period-doubled) fixed point. \((1P) \)

Solutions Sheet 1
Note: Increasing a further you will find that at $a \approx 1.25$ the fixed points $x_{0,1}^*$ become unstable and that the system bifurcates into period-quadrupling fixed points. This process of period-doubling continues until the system becomes chaotic.

$(\Sigma = 6P)$